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This paper treats the collective behavior of hot plasma as modified by the numerical time 
integration methods used to integrate the particle equations of motion in computer simula- 
tion of plasmas. No approximation, other than ignoring roundoff errors, is made in analyz- 
ing the finite-difference algorithms. Our results reduce simply and exactly to the correspond- 
ing results of plasma theory in the limit At + 0. The possibility of nonphysical instability is 
considered. The results of this and of previous papers are combined to describe both the 
spatial and temporal difference algorithms. The theory is generalized to a class of integra- 
tion schemes, some algorithms are analyzed, and a new example is synthesized. The difficulty 
of developing algorithms stable at very large time steps is examined. The present analysis 
may be combined with an earlier rigorous analysis of the spatial grid used for field equa- 
tions, to develop a kinetic theory of simulation plasmas paralleling that for real plasmas. 
This theory may be of use in the design and interpretation of computer simulation ex- 
periments. 

1. INTRODUCTION 

In “particle” models for computer simulation of plasmas, the algorithms for 
advancing the system one time step forward usually divide into two parts: calculation 
of electromagnetic fields and particle forces, and advancing the particle positions and 
velocities. Other papers have dealt in detail with the former, while assuming the latter 
was performed exactly by the differential equations of Newtonian dynamics. In this 
paper we discuss properties of finite-difference equations commonly used to advance 
the particles in time [1], in the unmagnetized case. In most of the discussion we will 
revert for clarity to continuum x space for the fields and forces. However, the results of 
this and earlier papers are combined in Section 3 to yield results which include 
exactly the effects of discreteness in space and time. This work is a prerequisite for 
development of a quantitative kinetic theory of simulation plasmas. 

Most of this analysis was performed in 1969-1971 and some results have appeared 
elsewhere [2, 31. Other authors have studied aspects of the time integration by other 
methods [4, 51 and by extension of the methods of this paper [6]; their work has 
included both fully electromagnetic fields and the Darwin magnetoinductive approxi- 
mation. This paper is a much more complete account of the electrostatic case than 
has appeared previously. 

The possibility, indeed desirability, of smoothing the interparticle forces at small 
separations in the simulation of hot plasmas has been exploited in the electromagnetic 
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field solving algorithms used in modern plasma simulation which are much faster 
than methods requiring summation over particle pairs, as used in stellar cluster 
dynamics and in some early plasma simulations. The smoothness of the field variations 
and the dominance of collective fields over close-range interactions makes feasible time 
integration algorithms of great simplicity and speed in which each particle is integrated 
independently. Published descriptions of this approach appear in [7-91 but it was in 
use by those authors much earlier. Variants were developed later by other workers [lo]. 
Only this type of time integration is considered in this paper. 

The models obviously do not accurately reproduce the microscopic dynamics of a 
plasma, e.g., binary collisions. However, we are not interested as much in the accuracy 
of individual particle orbits as in the accuracy of collective plasma phenomena. 
Therefore, our analytic approach and discussion are more those of the plasma 
physicist than of the numerical analyst studying, say, an initial value problem for a 
system of differential equations with no particular application in mind. In fact, the 
algorithms used are primarily applicable to plasma simulation and are seldom used 
in other fields. 

It is customary in discussing numerical approximations to operations of calculus 
to consider one’s dependent variables as polynomials or Taylor series in the inde- 
pendent variables. In particular, estimates of truncation error are usually made in ths 
way. However, for many purposes it is more natural to use the complex exponentials 
as basis functions, especially when one is approximating a system with time-invariant 
dynamics [I 11. This is particularly true for plasmas, where theoretical study is often 
aided considerably by the use of Fourier and/or Laplace transforms in space and time. 

It seems more informative to work with the deflections from zero-order orbits caused 
by the fields, rather than to seek a finite-difference analog to the Vlasov equation as 
done in [4, 51. Relevant features are seen directly, such as the limitations of linearized 
analysis. With no complication, the theory applies to time integration schemes which 
correspond to third-, or higher-, order differential equations of motion (so that the 
dimensionality of phase space necessary to describe the state of the system is 
9N or higher instead of 6N, for N particles in three dimensions), and to algorithms 
which are not measure preserving, i.e., particle motion does not preserve phase-space 
volume. We will retain the physical content of the Vlasov approximation but will 
perform its bookkeeping function by another means. 

We first find the dispersion function which describes the response of the plasma 
to perturbing fields and whose zeros give the dispersion and stability of free oscil- 
lations. This is derived by two methods which illustrate different aspects and parameter 
limits. The analysis of plasma oscillations involves the same physics as in the classic 
“Landau problem” [12], and the results reduce to it simply and correctly in the limit 
At --f 0. No unexpected numerical instabilities are found. The results of this and of 
previous papers are combined to describe both the spatial and temporal difference 
algorithms. The theory is generalized to a class of integration schemes, some examples 
are analyzed, and a new algorithm is synthesized. The possibility of &ve]oping 
algorithms stable at very large time steps is examined briefly, and some difficulties 
pointed out. 
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2. ANALYSIS OF THE UNMAGNET~ZED “LEAP-FROG” ALGORITHM 

2.1. The Plasma Dispersion Function 

We consider perturbations of a uniform, infinite or periodic, unmagnetized, one- 
species plasma with fixed neutralizing backround. With no perturbation the particle 
density is n, and the velocity distribution isfO(u). In the Vlasov limit the particles travel 
along straight lines, not appreciably affected by collisions. We will compute the 
deflection of a particle from this straight path due to an electric field of the form 

E”‘(x, t) = Eeik.x-id 
(1) 

with Im w > 0, starting from t = - co when the plasma was undisturbed. The 
extension to multiple species and to Im w 6 0 will become evident later. 

The particle difference equations are [I, 71’ 

V,++ - v,-; = a, At, 

x,+1 - x, = v,++ At. 
(2) 

Splitting x and v into unperturbed and perturbed parts, e.g., x = x(O) + x(l), 
eliminating v and linearizing, we have 

(1) ~~(1) + x"' = 1 At2&,~k~XiP'-htn 
x,+1- 11 n1 m 3 (3) 

where t, == n At. On the left-hand side, x(O) drops out. On the right-hand side, 
the field is evaluated at the unperturbed orbit position xf’ = xIp’ + do)&, ; thus 
the linearization condition is 

k - x(l) < 1. (4) 

This condition will reappear later in the calculation, and replaces the more stringent 
condition 

usually quoted [e.g., 121. Condition (4) will suffice for the linearized calculation of the 
charge density perturbation p u); Eq. (5) applies to calculation of the phase-space 
density fu)(x, v). The success ofjlinear theory at amplitudes for which Eq. (5) is 
violated may be understood via this Lagrangian analysis. For example, growth rates 
for instability of counterstreaming cold beams are accurately predicted when (4) is 
satisfied, yet (5) is violated at any amplitude. 

The right-hand side of Eq. (3) varies in time as 

e 
--i(w-k.v%, _ --iw& 

(6) 

1 It is clear that this algorithm is measure preserving because the velocity advance and position 
advance are each only a shear in phase space. 
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and xh” also varies in this way; no rectilinear terms appear in x(l) since x(l) + 0 as 
t, + - co. Substituting this dependence into the left-hand side of Eq. (3) we find the 
solution 

x(1)(x;;), n v(O), t ) At2 = e-iwddt 
4 &i(k.x;)-id,,) 

- 2 + eiwdt 171 

= - 
i 
$ sin(w - k . v(O)) $)-' f E(l). 

We have explicitly recognized the dependence on xc”), u(O), and t. 
From this orbit deflection we must calculate the resulting charge density pertur- 

bation. This density could be imagined as resulting from displacement of particles 
from their unperturbed positions x(O) by an amount x(l) and regarding the result as a 
superposition of monopoles q at x(O) and dipoles consisting of $4 at x(O) + x(l) and 
-q at x(O), i.e., dipole moment qx(l) located at x (O). The monopole density is canceled 
by the neutralizing backround. The dipole density P is obtained in the Vlasov approxi- 
mation by an average of qP weighted by the velocity distribution: 

P(x, t) = n,q 1 dv,fo(v) xyx, v, 1). (8) 

To obtain the change in charge density p(l), consider an arbitrary volume V and 
imagine moving particles from positions x (O) to x(O) + x(l); the change SQ in enclosed 
charge is due to particles which cross the bounding surface S. 

8Q=-j-ds.P 
s 

= - dxV.P, I (9) 2: 
Thus the charge density is 

#I’= -V.p= -jk.p 
(10) 

which varies as in Eq. (1). This result2 relies again on k . x(l) < 1 and also on 
no > k3. 

Using Eqs. (7), (8) and (10) and Gauss’ law one finds the dispersion relation3 

0 = e(k, 0) = 1 - us2 j dvfoW 
((2/At) sin(w - k . u)(&At))2 

= 1 +~jdvk~~~cot(w-k*v)+. 

(1 la> 

(lib) 

* The result without linearization may be obtained from the Jacobian 

/4x. t) = PO s &@(x(x, I VII 9 ~))/%d-lhh>. 
3 Another viewpoint is to calculate the susceptibility x(k, w), from which c = 1 + x. 
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where wP = (noqz/m)1~2 is the plasma frequency in rationalized cgs units [13]. The 
second form is obtained by an integration by parts; in the limit dt + 0 it reduces to 
the familiar plasma result [12]. The dispersion function E plays the usual role in other 
results such as for shielding and fluctuations [14]. 

Equation (11) was derived assuming Im o > 0, but may be used for damped 
oscillations by analytic continuation below the real w axis, just as in the usual Landau 
damping analysis [12]. This can be shown formally by doing an initial value problem 
using the “z transform” [15] analogously to Landau’s treatment using the Laplace 
transform. 

For a cold, drifting plasma, Eq. (1 la) yields 

2 w At w = k . v f dt arcsin + 

mk.v+w, (1 + &&At)2 + -*). (12) 

This suggests that to order dt2 the finite-difference error might be accounted for 
simply by an adjustment to wz, . We now show this to be true also for a warm plasma. 
Expanding the cotangent in Eq. (11 b), 

E z ] + g j dv k. +& ( w lk v - f (w - k . v) (+)' + O(dt")) 

= Eg - ; (w, At)” + O(At4), (13) 

where E,, is the standard dispersion relation for continuous time. The effect of the At2 
term on solutions w(k) of the dispersion relation E = 0 is the same slight increase 
in frequency as in Eq. (12). The absence of terms ccAt3 is due to time reversibil- 
ity of the equations of motion [l]. 

A useful form for E is obtained by using an expansion for cotangent which is valid 
everywhere in the complex plane [16, p. 751. This form is 

EEl+-- $2 jdvk+$ f 
1 

u=--a; w - k . v - qwq 

= 1 + c xc,& w - qqA (14) 

where x0 = Ed - I and wg = 2rr/At is the frequency characteristic of the time “grid.” 
Each term in the sum is analogous to the continuum result with w replaced by 
Co - qwg . Thus if we can compute l 0 for someJo , then we can also compute E using 
this series, whose convergence can be accelerated (see Appendix). For example, the 
result for a Maxwellian with drift fi and thermal velocity nt = (r/m)1’2 is 

E=l- 

where wq. = w - qwg is the “aliased” frequency [l 1, 171, and Z is the Fried-Conte 
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dispersion function [18]. This form is easy to calculate since computer programs to 
evaluate Z are common. 

Before discussing solutions of this dispersion relation, we digress to discuss 
“aliasing” and its implications here. The aliases wp of w satisfy the relation 
exp(-z+t,) = exp(--iwt, + 2dqn) = exp(-U,) for all integers y1 and q, 
Thus the aliases are different frequencies which produce identical variations in quan- 
tities defined only at times on a temporal grid [ 11, 171. 
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FIG. I. Locus of numerical solutions for .z = exp(-iudt), varying khD, for a Maxwellian velocity 
distribution, with sin(&,dr) = 0.5. and neglecting spatial grid effects. At kXD = 0 we recover the 
simple harmonic oscillator solution z = exp(&i). As kAD increases, the solutions move to the left 
remaining just inside the unit circle, then toward the real z axis, meeting when kAD = 1.45 and then 
separating. (The root moving temporarily to the left along the real z axis is the one which becomes 
unstable for w,dt > 1.62; see Section 2.3). For kAD > 1.6 both roots move toward z = 0 (increasingly 
damped) for the parameters of this example. 
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This equivalence is reflected in our theory by the periodicity of all quantities as 
functions of w, the periodicity being wB = 2n/At. Thus the infinity of poles of the 
integrand of Eq. (11 b) does not imply more than one resonance, nor does the period- 
icity of E imply the existence of new modes of oscillation. 

It is often helpful to replace the variable w by z = exp( -iw At), the rotation per 
time step, thus eliminating the periodicities and multiplicities of dispersion roots. 
The least-damped solutions for z of Eq. (15) are shown in Fig. 1 for the case o, At = 
2 sin(0.5) = 0.95885, a rather large time step whose exact value is chosen for later 
comparison with the continuous-time solutions. At k = 0 the solutions z = exp(fi) 
correspond to the plasma oscillations at w = fw, . As kX, is increased (h, = Q/W,, 
is the Debye length), the roots arc to the left, then toward the negative real axis where 
they rapidly meet and move apart along the real axis. One of the roots moves left a 
little, then follows the other root toward the origin. 

This interaction of the two plasma oscillation branches is a nonphysical aspect of 
the periodicity induced by the numerical methods. However, during and after the 
interaction, I z [ is well under unity, so that the modes are strongly damped and their 
interaction is harmless. For a larger time step the leftmost mode becomes unstable, 
as discussed later. 

We now examine the preceding dispersion solutions plotted in the w plane. We 
chose wp At so that at k = 0 the solutions are w At = &l, plus aliases. Shown in 
Fig. 2 is the branch passing through w At = 1, plus an alias of its negative which 
passes through o At = 27r - 1. One period in Re w At is shown. The Im cu are all 
equal. To see the accuracy of the correction in Eq. (13) we also solved the continuous- 
time (exact) dispersion relation with wP -’ chosen to be the time step in the simulation 
case. The solutions agree within 1 % for 1 kX, j 2 1. For larger kh, , Re w At is 

I , o- I 1 I 10-Z 
0.0 0.5 1.0 1.5 2.0 2.5 

FIG. 2. Real and imaginary parts of w = iAt lnz for the solution shown in Fig. 1. One period 
in Rew is shown (W is multiple valued). The lower and upper curves for Reo correspond to o - +w, 
and an alias of -w) . For comparison, solutions of the continuous-time limit are shown for corres- 
ponding parameters. The approximation of Eq. (13) is seen to be quite accurate until Rew approaches 
a/At (see text), despite the large At which exceeds normal practice. 
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nearing z-, aliasing effects become important, and the simple correction fails. At 
kh, z 1.45 the solution meets the alias of its negative (also a solution); this inter- 
action was already described above and was found to be of little consequence since 
the modes are strongly damped. 

For w,, dr ,b 1.62 one mode becomes unstable, as discussed in Sec. 2.3. 

2.2. Analysis by Summation Over Particle Orbits 

It is instructive to reconsider the problem by means of a summation, analogous to 
integration, over past accelerations, evaluated along the zero-order orbits. This 
approach leads to an understanding of the large kv, At limit, the “memory” of the 
system, and the role of phase mixing, and uncovers a point of distinction between 
leap-frog and other schemes which facilitate evaluation of the dispersion relation and 
motivates the approach of Section 4. 

To evaluate x(l) in terms of a, we consider the sums 

in which each term vanishes in the leap-frog scheme. As before we assume all first- 
order quantities vanish in the distant past, such that the sums converge. In the 
summation almost all contributions from the first-order terms cancel, leaving 

x(l) = At f Y:,~,+ n 
X=1 

= At2 f sa,$!,s. 
S=l 

(16) 

Assuming the force field variations of Eq. (1) we find 

x(‘)(x(~), y(O), t,) = ; E At2e(ik.x’0’-i4t) f Sei(w-kWsAt 

h-=1 

in which v = v(O) and the sum converges for lm o > 0. Proceeding as before to 
evaluate the charge density and then the dielectric function 

E = I + w,2At2 ‘f f dvfo(,,) Seibk*vWt 
s=1 " 

= 1 - ~CU,~ At & f f dvfo(v) ei(w-k.v)sAt. 
S=l 

(17b) 
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By performing the u integral next we Fourier transform & in velocity space 

I a 

E = I - iw,,“AtL aw 2 &(ks At) eiwaot, 
x=1 

(18) 

where 

j,(G) = j dvfo(v) e-nv.i. (19) 

For a Maxwellian, j0(6) = exp(-~~zvtz) and the series converges for any complex w; 
this expression requires no analytic continuation. As kvt At -+ 0 the sum becomes an 
integral and this result reduces correctly to the continuum result, 

which can be manipulated by completing the square in the integrand to express it in 
terms of the complex error function. 

If we first perform the summation (a simple geometric series) in Eq. (17b), we can 
recover the result of the preceding section: 

== - + + hi cot u&Ar). 

Expressing the effect of ajaw on the integrand of Eq. (17b) as the same as -km2k . (ajav) 
yields Eq. (1 lb). 

The rate of convergence of the series in Eq. (17) indicates how long the force field 
at a given time will continue to affect the charge density, i.e., the memory time. 
For given w, the memory is shorter (convergence faster) for large kut At. Of course 
the deflections x(l) do not decay, and may grow, only their net contribution to p(l) 
decreases when averaged over a smooth distribution f0 in an oscillatory field. This 
process is familiar in plasma physics where it is called “phase mixing.” 

Equation (17b) is a power series in 2-I = exp(+iw At). Truncating the sum yields 
a polynomial equation in z. When enough terms are kept in the Maxwellian case, 
adding more terms adds z roots of small magnitude (heavily damped) without greatly 
changing the larger z roots. In this way we recover the infinity of roots expected in 
analogy to the continuum case. 

It is instructive to consider how Eqs. (11 b) and (18) change for another difference 
scheme. In a preview of Section 4, we consider the scheme of Feix et al. [19], 

X n+l = x, + v, At + ia, AP, 

V n+l =v,+a,At-t2 ’ ( a, itan- ) At2. 
(20) 
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We find 

x(1) - 
li - -$aEL1 At2 + At2 f saFLs. 

s=1 

The second term is the leap-frog result. Thus the schemes differ only in the response 
x(l) to a(l) at the preceding time only. Thus E differs from Eqs. (11 b) and (18) only by 

E - Eleap-frog = -&J,>” At2f0(k At) eiodt. 

The occurrence of this sort of relation between the leap-frog and several other schemes 
with second-order accuracy motivates the classification of Section 4. 

2.3. Numerical Instability 

In the analysis of spatial grid effects, an instability was found that was associated 
with the resonance of particles at the low phase velocities of alias waves [2,4, 201, 
e.g., wlk,> 2 vt for p # 0 while w/k > vt . The finite time step introduces new 
resonances and we should consider whether these have inconvenient consequences. 
Considering only temporal aliasing, no analogous instabilities have been found. 
Assuming without loss of generality that w < r/At, the phase velocities of the aliases 
are larger in magnitude and contribute less to Im E than the q = 0 term which 
contributes Landau damping. In fact, only when kv, At 2 rr can more than one q term 
in Eq. (14) resonate appreciably with thermal particles. Even for large values of kvf At, 
we have found no instabilities of this sort. 

Below we consider an instability which does arise in the linear theory, and an 
instability in a nonlinear oscillation. 

2.3.1. Linear Instability 

For wp At > 2 we can see from Eq. (12) that instability will occur for a cold 
plasma. We will now show that the Bohm-Gross dispersion reduces the instability 
threshold in a Maxwellian plasma. At the onset of instability, w At = CT + k . B 
or an alias, where Im E = 0. Making this substitution in Eq. (17a) the dispersion 
relation becomes 

The value of kv, At which maximizes the right-hand side shows where the plasma 
first becomes unstable as wg At is increased. We find instability at kvt At = 1.14 
when We At > 1.62. 

One might expect this instability to be attributable to particles moving more than 
about half a wavelength per time step, thus seeing a very distorted impression of the 
field variation. This situation can cause errors, as discussed in Section 4.2. However, 
at the onset of this instability a thermal particle travels less than one-fifth of a wave- 
length per time step. What occurs is not the destabilization of one mode, rather it is 
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the unphysical interaction due to aliasing of the two plasma oscillation frequencies. 
Instability may occur whenever one branch of the dispersion curve closely approaches 
an alias of another branch. 

As wIj dt is increased, the instability becomes stronger and occurs also at longer 
wavelengths, extending to k = 0 when wD dt > 2. (Note that w,, dt is nor to be 
interpreted module 2r/dt.) In actual simulations in this regime, the threshold values 
of wD dt will be affected by the field solution algorithms used on the spatial grid. 

Several examples have been tried using the one-dimensional code ES I, with these 
parameters: periodicity length 4 n, 32 cells, ut = I .14, AC = 1, and 4096 particles. 
To achieve a “quiet” nonthermal starting condition, 128 particles were loaded in the 
first cell distributed in velocity to approximate a Maxwellian. These particles were 
replicated in the other cells. A small random velocity (rms 10-5) is added to each 
particle; from this perturbation the instability may grow. With wl, = I .8, the second 
Fourier mode grew rapidly, as predicted by the theory, with Re w At = n. Trapping 
vortices form around velocities in which resonate with the oscillation, since 
(w - k . v) At = 0 modulo 27~. Saturation of mode 2 occurs at time 60; by time 80 
the kinetic energy is 1.8 times the initial value and rising rapidly, with a superthermal 
“tail” on the velocity distribution. As wg At is decreased to 1.6, saturation levels 
for mode 2 and the total field energy drop rapidly, as does the increase in kinetic 
energy. For wP dt = 1.6 and 1.5, i.e., below threshold, mode energies saturate at 
values close to those of runs with noisy, random starting conditions, i.e., velocities 
uncorrelated. The observations in this paragraph are consistent with the predictions 
of the linear collisionless theory. 

It is still mode 2 which reaches saturation most quickly when w,, At = 1.5. This 
may be related to the theoretical result that the fluctuation spectrum is proportional 
to 1 E 1-2, which is enhanced even below the collisionless threshold. Such results are 
beyond the scope of this paper, but we confirm the empirical observation [21] that 
large w,, At and uy At/Ax result in high noise levels and rapid nonphysical heating. 

The predictions of linear theory are more readily confirmed for a “square” distri- 
bution (Jo = (2~7)’ for 1 v 1 < a and zero otherwise) because nonlinear effects (particle 
trapping) do not occur at such low amplitudes. Instability occurs for 

($A~, At)z tan($ka At) > i 
$ka At ’ 

We have tried two examples in ES 1: wD = 1.77 with a = 2.33 and wI, = I with 
a = 2.86. Other parameters remain the same as for the Maxwellian cases. In both, 
mode 1 was stable and mode 2 clearly showed exponential growth until saturation by 
particle trapping began. Saturation occurred at a lower amplitude in the second case 
since the phase velocity w/k = 1.1 a is closer to the particle velocities. It is clear that 
large Bohm-Gross frequency shifts, made possible by this sharply cutoff distribution, 
cause the instability by producing large oscillation frequencies approaching n/At. 

In the author’s present view, destructive instabilities are found only for conditions 
so extreme that trouble should be expected even without having a formal theory. 
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2.3.2, A ~o~I~neur Instability 

In a nonlinear oscillator the acceleration is not sinusoidal but contains many 
harmonics of the fundamental oscillation frequency. If an alias of a harmonic is 
near the fundamental frequency, then the oscillation may deviate from the correct 
result. For example, we consider an oscillator of the form d2x/dt2 + wo2x = ST,(x), 
where T6 is a Chebyshev polynomial with the property that T,(cos 0) = cos no 
(Eq. (22.3.15) in [16]), so that the nonlinear term contains only the sixth harmonic 
when x varies sinusoidally with unit amplitude. Starting with x, = cos wt, and 
w0 d t = 2 sin V/M so that one period takes M time steps (with 6 = 0), we find the 
amplitude initially increases when M = 7 and decreases when M = 5, as predicted 
by an analysis in which one sets x, = A,‘ cos(wt, + fl,), where A, and 0, vary slowly. 
One usually associates instability with an increase in amplitude, but a decrease can be 
as damaging a divergence from correct behavior. A theoretical explanation of the 
instability of the case M = 6, and of the recurrent behavior of the M = 5 and 7 cases, 
requires more elaborate analysis. For example, with A4 = 5, the energy decreases by 
about 30 % and then returns almost to the initial value; the recurrence time is 
1.36/(&J. The energy ratio is independent of 6, so that even a very small nonlinearity 
can produce a significant error. 

3. THE DISPERSION FUNCTION INCLUDING BOTH FINITE dx AND At 

The analysis of this paper and Refs. [20,22] on the spatial grid is merged easily. 
Simply evaluate Eqs. (7), (8), and (10) for the density response at each spatial k,, to 
obtain the result we used in Refs. [2, 314 

c: = I + $1 S2(k,) j dv x(k,) + 2 + cot(w - k, . v) $ . 
P 

(23) 

This expression includes both “momentum conserving” [20] and “energy conserving” 
[22] field algorithms: for Ref. [20], K(k,) = K(k) and so may be removed from the sum; 
for Ref. [22], K(k,,) = k, . This result serves as a dielectric function for quantities 
defined on the space-time grid, and, like them, is a periodic function of k and w. 

The alternate form for the At analysis gives 

One observation from this expression is that phase mixing makes the sum over p 
converge more rapidly than in the At ----f 0 limit. For a Maxwellian, the contribution 
of the terms for which k,,q At 2 I in the sum over p is approximately 

4 The shape function denoted by S here and in [2,3,22] was called S, in the original derivation in [20]. 
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since the s 3 2 terms are much smaller. It is clear that, for 1 p j 2 (kgut At)-l in one 
dimension, the contribution is reduced by phase mixing. Thus if vt dt >, dx, then the 
sum over p converges in only a few terms; however, this regime exhibits excessive 
numerical heating [21]. 

A more trivial remark is that a drift velocity equal to a multiple of dx/dt is the 
same as no drift in infinite or periodic systems. This is not surprising in electrostatic 
codes, since the field grid points are at the same positions relative to the plasma at 
every time step. Thus a limited form of Galilean invariance is restored. 

More complicated examples of combined dx and dt analysis appear in [3, 141. 

4. OTHER UNMAGNETIZED ALGORITHMS 

4.1. A Class of Algorithms 

We now consider a class of algorithms for which the impulse response differs from 
that of the leap-frog result for only a few time steps, recalling the discussion of Eq. (21), 
i.e., 

Assuming exponential time dependence, (XL’), at’) = (X, A) P, 

X 
A At’ 

=c”+~+~+...+Jkk+__ 
(z i 1)“’ 

where again the last term is the same as for the leap-frog algorithm; therefore the 
latter is the simple special case in which k = 2 and c,, = 0. The corresponding 
difference equation can be written in the form5 

%I - k-1 + x,-2 
At2 = Aan + Plan-1 + ... + hkk (27) 

It is evident that the unperturbed (a = 0) motion is rectilinear. The order of this 
equation is k (because there is a span of k + 1 times involved), and it is implicit if 
PO 3 c0 is nonzero. Implicit schemes are of interest in “stiff” systems, e.g., for studies 
of ion oscillations in which only the low frequency response of the electrons is wanted 
and one wishes to eliminate the instability resulting from setting At much greater than 
the electron plasma period. This issue and its difficulties are discussed in Section 5. 

The warm plasma dispersion function may be obtained following the method of 
Section 2.2 to be 

E = qeap-frog + up2 At2 (28) 

5 The converse is not true, however, as it permits a term proportional to (z - 1)-l in Eq. (26), 
which would increase the error in Eq. (29) to O(dt). 
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Evaluation of +,ap-frog is discussed in Section 2 and the Appendix, and the new 
terms are easily expressed in terms of the velocity transform &a). 

Derivation of E by the Vlasov method [4, 51 is not directly possible in general, as 
only the zero-order motion conserves phase-space volume, i.e., the motion need not be 
a measure-preserving mapping as it is in a Hamiltonian system. 

We will consider the accuracy of such algorithms as applied to the simple harmonic 
oscillator, and then examine several examples. 

4.1_ 1. The Simple Harmonic Oscillator 

At long wavelengths the particles undergo simple harmonic oscillations at the 
plasma frequency. For an oscillator with frequency w0 there are two roots of Eq. (26) 
corresponding to frequencies near iwO, and k - 2 strongly damped roots, for small 
w,, d t. The two roots near fwo will be shown to have an error in their real part which 
is second or higher order in At, and an error in their imaginary part which is third or 
higher order in At. 

To analyze the harmonic oscillator we put A = ---cIJ~~X in Eq. (26). For small 
w0 fit it is evident from inspection of Eq. (26) that there are k - 2 roots near z = 0 
(strong damping), and two near z = 1, corresponding to the oscillation. To discuss 
accuracy of the desired roots we set z = exp(-ii(w, + 6~) At) and expand, keeping 
terms linear in 8~. We find 

Re& = (WodtY 1 
WO 2 i Tz - co - ... - Ck-2 ) + O(dt3), 

Im ho - (Wo;t)” 
(29) 

wn 
(Cl + 2c, + **a + (k - 2) Ck..cJ f O(dt*). 

Thus this class has second-order error in Re w, but the more damaging error in Im w 
is third order, as claimed above. For the leap-frog algorithm we find &J/W, = 
(w. dt)2/24, as in Eq. (12); 6w is in fact real to all orders for this time-reversible, 
second-order scheme. 

EXAMPLE (a) (Feix et al. [19]). This scheme, Eq. (20) would appear to be moti- 
vated by a Taylor series expansion about time t, , with a first-difference estimate for 
da/dt. The dispersion function has already been given, Eq. (22). Setting (x, , v, , a,) = 
(X, V, A) zn and eliminating V, we find 

X (3/2 - l/22) + 1 
AdtB= (z - 1)” 2(z - 1) 

581/30/2-s 
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Comparing with Eq. (29), we find k = 3, c,, = 0, and c1 = -$, Thus 

Re E = & (wO dt)2, 

IrnJ& = i(~,dr)~. 
(30) 

The error in oscillation period is seven times that for the leap-frog method, and there 
is also a weak instability.6 Another disadvantage is that a past acceleration must be 
retained in computer memory, as well as x and v. However, for the parameters used 
in Ref. [19], wp dr = 0.1 typically, the growth is weak and was probably suppressed 
by collisional damping. Also it may sometimes be an advantage that x and v are given 
at the same times. 

EXAMPLE (b) (Birdsall). Another scheme with this advantage is 

V la+l =v,+a,dt+2( 
1 a, itan- p2, 

X n+1 = x, + ; (v,+1 + vn) At. 
(31) 

The velocity is advanced in the same way as in Example (a), but the position is 
advanced by the trapezoidal rule. We find 

x (3 - z-1)(2 + 1) 
A= 4(z - I)2 

= -- 
t,+*. 

Thus k = 3, c,, = 0, c1 = -t, and 

Re g = k (w,, dt)2, 

Im -F! = f (wO Llt)3. 
WO 

(32) 

This scheme appears to be more accurate than Example (a). 

EXAMPLE (c). This is an example of algorithm synthesis, as opposed to analysis, 
in which we eliminate the U(dt2) error in Re 6w in the leap-frog scheme. If one could 
use an implicit scheme, one would simply set co = l/12; the resulting time-centered 

8 This is a hint that the measure-preserving properties of the leap-frog algorithm have been lost 
in this scheme, even if this system could be described in a phase space with only the coordinates 
(xn , Gl>. 
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scheme has been very successful in other applications. Instead, we remain explicit at 
the expense of introducing an O(dt3) damping. From Eq. (29) we are lead to choose 
k 1 3, c0 = 0, and c1 = l/12. This gives 

Re g = O(dt3), 

Im g = - & (0~” Llt)3; 

(33) 

the difference scheme may be written 

v,+f = v,-+ + a, 4 
dt + (drz/12)(a, - a,..,). 

(34) 
Gil = x, j-- v,++ 

This is the same as the leap-frog method except for a term r(du/dt)@t3/12) which 
corrects Re o. The damping arises because time centering is lost in this term. This 
scheme seems preferable to the preceding two, if one is willing to save a for use in the 
next time step. 

By going to fourth order with c,, = 0, c, = l/6, and c2 = -l/12, we could 
eliminate Tm 6w as well, to the accuracy of Eq. (29). 

4.2. The Problem of Large Time Step 

In many applications one wishes to study low frequency phenomena, e.g., ion- 
acoustic waves, and would like to use a time step dt > w,,’ , while retaining a kinetic 
description of the electrons’ response to low frequency fields. We have seen this is not 
possible with the leap-frog algorithm; we shall now consider what sort of integration 
scheme is necessary and what difficulties there may be. 

The first point is that stability for large upe At seems to require an implicit time 
integration, as in other varieties of “stiff” differential equations. This can be seen 
by considering normal modes of Eqs. (25) and (27) for a simple harmonic oscillator. 
As w,, dt is increased, UN k roots z must remain less than unity in magnitude, and 
should preferably all become small (damped) when o0 d t > 1. 

Equation (27) with /I0 # 0 for each particle, together with the field equations, 
represents a very large system of nonlinear coupled equations. An iterative solution 
must be carried quite close to convergence if stability is to be retained. If linearized, 
the Jacobian matrix is large and neither sparse nor diagonally dominant. Its eigen- 
values are related to the modes of oscillation of a cold plasma with particles at the 
same spatial locations and tend to be distributed over a wide range of values. Thus the 
iteration may be expensive computationally. 

Even if the above difficulties are resolved, there is a more fundamental limitation 
in using particle electrons. From Eq. (28) we see that for kv, dt > 1 the dispersion 
function becomes 

E = I + ~,~dt~(c~ + (1 + cl)jo(kdt)eiWdt + ...) 
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which is large for w2, dt > 1, whereas in fact we want E = 1 -1- ~,~/(ku,)~ + .... 
Thus when kv, dt 2 1 we are unable to reproduce even Debye shielding correctly! 
To see how restrictive this condition is, consider that kX, = ku,At/w,At must be 
much less than unity when wl, At > 1. A Vlasov equation model for the electrons 
may be more practical than a particle model in such applications. 

APPENDIX: ONNUMERICALEVALUATIONOFTHEDISPERSION FUNCTION 

Expressions for the dispersion relation and fluctuation spectrum involve multiple 
infinite sums over space and time alias numbers p and 4, whose terms are transcen- 
dental functions. We will wish to take advantage of transformations and rearrange- 
ments which will speed convergence of the series, which is often very slow. 

A most interesting velocity distribution is the Maxwellian and it is the case we 
discuss here. Other distributions can often be approximated by superpositions of 
Maxwellians and derivatives thereof; some of the techniques apply also to completely 
different distributions. 

It appears most convenient to do the sum over 4 first. Its relative simplicity makes 
rapid summation possible. The result usually vanishes rapidly when k, is increased 
above (cI At)-‘, giving a natural cutoff to the spatial alias sums over p. 

Numerous occurrences of powers of 21j2 in expansions of 2 [18] and physical 
results expressed in terms of 2 are avoided by a renormalization of the thermal 
velocity to tt = (T/m)li2 and the dispersion function to 

For a finite time step we need a new dispersion function 

and its derivative with respect to the first argument, denoted by D’. 
For large k the q sum converges poorly. However it approaches the trapezoidal 

rule integration of D, and the difference between the two can be written as a rapidly 
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converging series. This result may be obtained by using the Poisson summation 
formula on Eq. (A2a): 

Note that this gives the alternate form of the dispersion relation which we found 
earlier by integrating over the velocity and leaving the sum over past positions of the 
unperturbed orbit.7 

Although this series converges more rapidly, each term involves a costly complex 
exponential evaluation, so we make use of a simple, numerically stable recursion 
relation between the terms to get the following algorithm: 

Iterate n > 1 

It may be verified that n iterations generates the nth partial sum for 

(A41 

(A9 

For small k, even this simple calculation becomes expensive and we reconsider 
Eq. (A2). For the dispersion function we need D’, but the remainder after summing 
from y = -Q to +Q is O(Q-‘), which is a very slow convergence. Improvement 
can be made by adding to the derivative of Eq. (A2) the summable series 

’ There is a connection between this manipulation and the Ewald technique in the theory of 
crystalline solids. 
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(Eq. (4.3.92) in [16]) whose terms nearly equal those of D’/k2vt2 for large / q 1, 
permitting near cancellation. One obtains 

l D’(e,$) = (-&siniwdt ’ --- 
k2rt2 ‘t ‘f 1 

+ fm (& D’ ( OJ Tlqfw” ) - (w - q%-‘). (A7) 

It is interesting that to order dt2 one need only keep the q = 0 term of Eq. (A7) 
to obtain the correction dt2/12 to the continuous time result. We have reported in 
Section 2.1 that this simple correction can be quite good. Thus a few terms of the 
series (A7) with no further tricks is good enough for many purposes. 

The function Z is often evaluated numerically as a series plus a term proportional 
to exp(--2/2k2v,2). Thus D would involve an infinite sum of these exponentials. 
Although the series converges quickly (or else we would use (A3)) it may be useful to 
note that a recursion similar in spirit to that of Eq. (A4) can be used here to avoid 
many exponential evaluations. 

For the fluctuation spectrum we need [2, 141 

; S2W j- dvf(v) a(~ - kp . v, 4 

= 1 S2(kp) T : ) vt Irn D (6;’ *,. 
P P P 

(A81 

As can be seen from Eq. (A3), Im D does not become small for large 1 p 1, but it does 
rapidly approach a constant. We rewrite the series 

The first series converges rapidly once / p j > (ut dt/dx)-l. The second series may be 
summed analytically using the spatial equivalent of Eq. (A6) and its derivatives. 
One finds 

c S2(kp) = 1 (NGP) 
P (AlO) 

= $(2 + cos k, Ax) +(2 + cos k, dy) +(2 + cos k, AZ) (CIC-PJC). 

This term becomes important for large vt dt/dx. It represents time-abased spatially 
filtered grid noise. It is independent of w (“white noise”) because the thermal motion 
decorrelates particle positions within the grid during one time step. This is dis- 
cussed in detail elsewhere [14]. 
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